Physiologically motivated time-delay model to account for mechanisms underlying enterohepatic circulation of piroxicam in human beings.
نویسندگان
چکیده
The study was conducted to formulate a physiologically motivated time-delay (PM TD) mathematical model for human beings, which incorporates disintegration of a drug formulation, dissolution, discontinuous gastric emptying and enterohepatic circulation (EHC) of a drug. Piroxicam, administered to 24 European, healthy individuals in 20 mg capsules Feldene Pfizer, was used as a model drug. Plasma was analysed for piroxicam by a validated high-performance liquid chromatography method. The PM TD mathematical model was developed using measured plasma piroxicam concentration-time profiles of the individuals and tools of a computationally efficient mathematical analysis and modeling, based on the theory of linear dynamic systems. The constructed model was capable of (i) quantifying different fractions of the piroxicam dose sequentially disposable for absorption and (ii) estimating time delays between time when the piroxicam dose reaches stomach and time when individual of fractions of the piroxicam dose is disposable for absorption. The model verification was performed through a formal proof, based on comparisons of observed and model-predicted plasma piroxicam concentration-time profiles. The model verification showed an adequate model performance and agreement between the compared profiles. Accordingly, it confirmed that the developed model was an appropriate representative of the piroxicam fate in the individuals enrolled. The presented model provides valuable information on factors that control dynamic mechanisms of EHC, that is, information unobtainable with the models proposed for the EHC analysis previously.
منابع مشابه
Physiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملDEVELOPMENT OF A PHYSIOLOGICALLY BASED TOXICOKINETIC MODEL FOR HUMAN EXPOSURE RISK ASSESSMENT OF METHYLENE DIPHENYL DIISOCYANATE(MDI)
Introduction: Given the lack of a developed physiologically based toxicokinetic (PBTK) model for human systemic exposure assessment of methylene diisocyanate (MDI) and prediction of its urinary metabolites, this study aims to develop a PBTK model for exposure risk assessment of MDI. Methods and Materials: In this study, to assess the potential exposure to the MDI, a PBTK model was constructed ...
متن کاملInfluence of Dimethyl Sulfoxide as a Penetration Enhancer of Piroxicam Gel Through Biological Skin
Piroxicam is a non-steroidal anti-inflammatory agent which has an extensive use in rheumatic disorders. Since its skin penetration is still a subject for research, the aim of this study was to evaluate the effect of dimethyl sulfoxide on percutaneous penetration of piroxicam gel formulation through skin. In this study, as a model, two types of 0.5% piroxicam new gels, so called red and gr...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملOptimal Ordering Policy with Stock-Dependent Demand Rate under Permissible Delay in Payments
We develop an inventory model to determine optimal ordering policy under permissible delay in payment by considering demand rate to be stock dependent. Mathematical models are derived under two different cases: credit period being greater than or equal to cycle time for settling the account, and credit period being less than or equal to cycle time for settling the account. The results are illus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Basic & clinical pharmacology & toxicology
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2009